The third virial coefficients for argon from the first principles
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Mottvation

»To calculate bulk properties without any experimental parameters, but Planck's constant, charge of electron, etc.

» The third virial coefficient
The simplest thermodynamic quantity where the three-body intermolecular interactions play role.

C=C ot C
Cadd=—161TN2r;f: fio f:ﬂf(r)f(s)f(t)tdtsdsrdr

Cnadd=161TN2r;f: fio f:ﬂe(r)e(s)e(t)[exp(—5u3)—l]tdtsdsrdr
where f(r)=e(r)—1=exp[—Bu(r)]—1,u(r) is the pait potential, u;=u;(r,s,t)isthe three-body potential, and B=1/k,T.

> Argon
Since the molecule 1s monoatomic, nonpolar and spherically symmetric, argon 1s generally used as a reference fluid to test molecular approaches.
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»The geometry of Ar, has been described by the perimeter of the Three-body energies for D3, geometry and perimeter = 3 x 3.757 A. For each choice of Ar; geometry, three-body energies have been
Ar, triangle, p, and by the two smaller angles in this triangle, o and f3. e . calculated at the C.CSD(T) ¥ d-aug-cc-pVQZ A AL
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both an fcc and an hcp argon crystal. = < To save computer time, the following procedure has been adopted:
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o : - = - » A small set of energies has been calculated for a small number of perimeters, at both
e the most frequent three-body g 354 %‘ 3.5+ the aug-cc-pVTZ and the d-aug-cc-pVQZ level. This has usually taken 7 — 10 days of
90 configurations in an argon crystal % 8§ P | . i . computer time.
i ® Ar3 configurations used in our work E 3"3'- - .- :UQ-OC-PVT;"—:I . o 3'“_ - -® - x-aug-cc-pVDZ » Differences between the aug-cc-pVTZ and the d-aug-cc-pVQZ energies have been
. 25 @ -0 - taugroopNZ || " asles Bty fitted to an analytical formula.
70 ) | . | , : TR , » A much larger set of energies has been calculated (20 — 40) at the aug-cc-pVTZ level
i o 2 -3 : L . 3 (about one hour of computation).
60 - o ¢ . Nin x-aug-cc-pulz xin x-aug-pVNZ » Finally, the aug-cc-pVTZ energies have been corrected.
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" Contributions due to triple-excitations and core correlations.
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>basis sets — x-aug-cc-pVNZ with N=D,T,Q and x = s,d,t = 6 # uf o 4 e 27 - 60-60-60 .. 45-45-90
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[Pauir potemtials wsedl:
> Ab initio potential of Slavicek et al., Ref. [1].
All-electron CCSD(T) and CCSDT correlation methods,
extended basis sets: aug-cc-pVXZ, X=D, T, Q, 5, 6 combined with spd and spdfg bond functions.
»Semi-empirical HFD-B potential of Aziz, Ref. [2].
Parameters fitted to experimental data.
[Resulltse Concllusion

> The theoretical results for the third virial coefficient are in a perfect agreement with the
%0 — state-of-art experimental data within their estimated uncertainities. The results obtained

a0 |1 this work, u,(r) given by Ref. 1] | - using the semi-empirical Aziz's pair potential and the present three-body contribution are
200 [/4 TN this work, u,(r) given by Ref. [2] | similar.
2000 |- > exp.data, Ret. [3] »>New three-body potential will be used to calculate vibration spectra of argon trimers,

1800 |- crystal structure and their binding energies.

» Works on the heavier rare gases (krypton and xenon) are also in progress.
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